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A Random Discrete Velocity Model and 
Approximation of the Boltzmann Equation 
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An approximation procedure for the Boltzmann equation based on random 
choices of collision pairs from a fixed velocity set and on discrete velocity 
models is designed. In a suitable limit, the procedure is shown to converge to 
the time-discretized and spatially homogeneous Boltzmann equation. 
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1. I N T R O D U C T I O N  

We are concerned with the relationships between discrete velocity models 
and the Boltzmann equation on one hand, and discrete velocity models 
and particle approximations of the Boltzmann equation on the other hand. 
The investigation in this paper was originally inspired by the fundamental 
problem of approximating the Boltzmann equation with discrete velocity 
models; the random discrete velocity model which we present here offers a 
very simple solution to this problem. In addition, it may offer an interesting 
alternative to solving the Boltzmann equation with particle simulation 
techniques. 

We mention that the model presented here is just one (the simplest) of 
numerous possible random discrete velocity models which are conceivable. 
We restrict our analysis to the present model because of its simplicity, 
because it contains all the essential ingredients of these new models, and 
because we have a convergence proof for this model. 
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Discrete velocity models (DVMs) of the Boltzmann equation were 
originally introduced with the idea of arriving at simpler model equations. 
Indeed, for some fundamental questions, such as shock wave structures, 
boundary layers, etc., the easiest models, e.g., Carleman model or the 
Broadwell model, offer analytic solutions (see Broadwell (1) or Platkowski(~)). 
For more sophisticated models, unfortunately, it does not seem to be 
true that DVMs are simpler than the Boltzmann equation. In fact, the 
discretization of the velocity space prevents the application of the modern 
technique known as "velocity averaging," such that the famous global 
existence theorem for the Boltzmann equation due to DiPerna and Lions (3) 
does not carry over to DVMs. 

In spite of this, DVMs have attracted intensive attention over the 
decades, and this attention has led to impressive progress in kinetic theory 
and related fields (e.g., cellular automata). As for DVMs, there are global 
existence theorems for small data, (4) existence theorems for steady bound- 
ary value problems, (5) explicit solutions, (6'7) and numerical solutions. <s/ 
Survey papers or books on discrete velocity models were published by 
Illner and Platkowski <9) and by Sultangazin. ('~ Recently, Nurlybaev (n) has 
presented a systematic way to obtain DVMs from the Boltzmann equation. 

It is remarkable that there seem to be no results on the approximation 
problem of the Boltzmann equation by DVMs. We believe that this is due 
to the closure problem for discrete velocity models, which is as follows: 

If (41 ..... ~n) is the admissible velocity set for a DVM, the collision 
rules for this DVM must be such that if (~ ,  r is an admissible pair for a 
collision, then a possible outcome (r ~)) of this collision must result in 
velocities in the original set. For a general choice of original velocities, it 
is then not at all clear how many (if any) admissible pairs there are. Typi- 
cally, some velocity pairs have to be excluded from collisions altogether, 
while others can have only very few types of collisions (i.e., only one or two 
outcomes of the collision are possible). 

To illustrate this, consider the discrete velocity set {~ ..... iN} sketched 
in Fig. 1. Suppose that we want to construct a discrete velocity model 

~i g 

~3 

""" ~" ~N-I 

x ~N 

Fig. 1 
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for which {41 ..... ~u} are admissible velocities and for which every pair 
(4;, is), i, j = 1 ..... N, of velocities is admissible for a collision. If energy and 
momentum are conserved (as they should be), the postcollisional velocities 
r ~; will be opposite on the sphere with center 1/2(~i + ~j) and diameter 
1141-~jlt. Their exact position will depend on the choice of the collision 
parameter (choosing more than one collision parameter will lead to several 
postcollisional pairs). 

In any case, there are up to N(N--1) postcollisional velocities, and 
most of them will not be from the original set. One can add them to this 
set, but unless one does not want the addition of additional velocities, a ~. 
can only have one type of collision, namely the one with r with the 
original collision parameter [and the result of this collision is the pair 
(4i, ~j) which originally led to the creation of (~)., 4~.;)]. This is the type of 
prejudice which one has to introduce at some point into the collision 
structure if one wants to stick to finitely many velocities. 

In contrast, recall that in reality for any precollisional pair (4, ~.)  we 
have a continuum of postcollisional pairs (4', 4 . )  given by 

4 ' =  r - e ( e .  (4 - 4 , ) )  

4 .  = ~. + e(e. ( i -  i . ) )  

e s S 2. Recall that the spatially homogeneous Boltzmann equation is, in the 
usual notation f ,  = f(t, ~,), f '  = f(t, 4'), f ,  = f(t, ~,), 

3 , f =  f f  q(~, 4., e ){ f ' f .  - f f .  } de d~. (1) 

A weak formulation of the Boltzmann equation is obtained by 
multiplication of (1) with a continuous bounded test function r and 
by integration over 4: 

a, f f~od~=~fq(4,r162162 (2) 

We write #, for the measure with density f(t, 4); then (2) can be rewritten 
a s  

g,(t~,, ~o ) = f f f  q(r 4 . ,  e) ~(4)[d(M, oJ)({, 4., e)-gM,(4, { . ,  e)] (3) 

where J: (4, ~ . ,  e)--+ (4', 4 . ,  - e )  denotes the involutive collision transfor- 
mation and dM, is the product measure 

dM,(g, 4, ,  e) = d/z,(r d~,(~,) de 

DVMs approximating the Boltzmann equation must therefore be 
designed such that the totality of their loss part of the collision term 
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approximates the product measure dMt and such that the totality of their 
gain parts approximates the measure d(M, o J). 

The closure problem addressed above leads to severe difficulties at this 
very point. Notice that it is not enough to just approximate d#t | d#t--we 
have to approximate d#,(~)dp,(~,)de; however, since in the standard 
theory of DVMs some velocity pairs are not suitable for collisions at all, 
or only with very few collision parameters e, the approximation of the 
measure de, and hence the approximation of dM~, becomes problematic. 

We made some attempts to overcome the difficulty for standard 
DVMs, but without success. The models which we constructed toward this 
end may be of independent interest and will be discussed elsewhere, but we 
eventually overcame the approximation problem by the introduction of a 
new type of discrete velocity model, the random discrete velocity model 
(RDVM). 

Random discrete velocity models are a hybrid between standard dis- 
crete velocity models and particle simulation techniques for the Boltzmann 
equation. The only fundamental idea is to work with a finite set of 
velocities at any given time, but to allow that set and/or the collision rules 
to change stochastically from time to time. Needless to say, this idea can 
be implemented in a multitude of ways. In this paper, we confine ourselves 
to the presentation of the simplest RDVM we were able to construct--at 
any time, the model consists of finitely many independent 4-velocity models. 
We design the model in Section 2. In Section 3, we prove convergence to 
the time-discretized and spatially homogeneous Boltzmann equation 

f ( t  + At, r = f(~, t) + At i f  de d~, q(~, ~,, e ) { f ' f  , - i f ,  } 

We require a special type of approximation of the initial value--we 
have to distinguish between "primary" (precollisional) and "secondary" 
(postcollisional) velocities, and only the primary velocities can be used to 
approximate the data. This is a subtlety of the proof which surprised us, 
but if the secondary velocities are allowed for the approximation of the 
initial data, the approximation of the collision term may be in jeopardy. 
The reason for this is explained in Section 4. 

We believe that random discrete velocity models as introduced here 
Can be combined with the standard trick of partitioning the physical space 
into cells, spatial homogenization over each cell, and "splitting" of free flow 
and collision calculation to prove convergence of the method to the full, 
spatially inhomogeneous Boltzmann equation. The blueprint for this proce- 
dure is contained in ref. 12, and we relegate the detailed discussion to 
future work. 



Approximation of Boltzmann Equation 777 

2. A R A N D O M  DISCRETE VELOCITY M O D E L  

2.1. The Mode l  

Let 9~ 3 be the velocity space, and let n = 2 m  be an even integer. 
Suppose that 9~ 3 is partitioned into n velocity cells; of course, some of 
these cells must have infinite volume. 

We will assume that as n --* m, the "mesh" of our partition converges 
to zero. More precisely, let, for given n, C,,(j) be the j t h  cell in the 
partition chosen for n, and let BR(0 ) = {~; 1[~11 ~< R}. We require that 

lira sup d i a m ( C . ( j ) ~ B R ( 0 ) ) = 0  (4) 
n~,~ O<~j<~n 

for each R > 0, i.e., the mesh of the partition converges to 0 uniformly on 
compact sets. 

Of course, the refinement of the partition is needed to approximate the 
initial value and the solution of the Boltzmann equation by point measures. 

We choose velocities ~i (=~n) )  such that for each i= 1,..., n, ~ Cn(i). 
The following five steps define an RDVM based on an initial partition 

of 9~ 3 into n = 2m velocity cells and velocities ~., i = 1,..., n, chosen from the 
cells. 

1. In i t i a l i za t ion .  If f0(r is the initial value for the spatially 
homogeneous Boltzmann equation, we associate the initial weight 

gi(O) = fc.(i)fo(r de 

with the velocity ~.. Note the obvious consequences 

gi(O) ~ ~ gi(O)-'~ffo "~'1 
i = l  

and ]2 
Y g,(O) gAO)= g,(O) = 1 
i,j 

Replace fo(r by ~7=1 gi(O)3e~(d~). We denote this discrete 
measure by #~. 

2. Coll is ion Rule. Choose randomly m disjoint collision pairs of 
velocities (r from {~1,..-,~}. This can be realized, conceptually, 
by choosing randomly a permutation n of { 1,..., n} and by forming the 
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pairs (~,(2k-l~,~I2k)), k = l , . . . , m .  Then, choose m independent and 
equidistributed random collision parameters e k S S  ~ and calculate post- 
collisional (secondary) velocities (r r according to the collision 
transformation 

{;{=k- 1) = {=C2k-- 1) -- ek(ek " (~ra(2k-- 1 ) -  ~(2k))) 

~'=(2k) = ~=(2k). "~'- ek(ek" (~.(2k- 1)-  ~r~(2k))) 

This way of choosing random collision pairs was first suggested by 
Babovsky. (~3) 

3. T ime  Evolut ion .  Let A t > 0  be a time step. We calculate the 
mass transfer from the precollisional to the postcollisional velocities 
according to the formulas 

g(0, 4;)= g;(0), i=  1,..., n 

g(0 ,  r  = 0, i = 1,..., n 

(notice that we take zero initial data for the postcollisional velocities, as 
mentioned in the introduction), and 

g(At, ~i) = g(O, ~ )  - F(i, j,  e) 

g(At, {j)= g(0, { j ) -  F(j, i, e) 

g(At, ~;)= F(i, j,  e) (5) 

g(At, { j ) =  F(j ,  i, e) 

where (r {;) forms, of course, one of the chosen collision pairs, e is the 
corresponding collision parameter, and 

fAt-2m-[52[  q({,, {j, e) g(0, {j) g(0, 4;) (6a) 
F(i, j ,  e) := ~ if this quantityis ~<g(0, ~) 

{, g(0, {i) otherwise (6b) 

IS 2] = 4re is the surface of the unit sphere. 
Notice that (6a) in the definition of F(i, j,  e) applies if At is so small 

that 
At(2m) 1821 q({~, {j, e) g(0, {j) ~< 1 (7) 

for all i, j. Condition (7) is reasonable at time zero because we expect from 
the definition of the weights g(0, r that 

C 
g(0, Cj) ~< 2--~ (8) 
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for some constant C. Whether (8) will remain true in the time evolution is 
an important but difficult question which we leave for future work. 
Obviously, the constraint (7) on At becomes problematic as the number of 
velocities (and hence weights) increases. 

The result of our time evolution is a discrete measure 

~ ] , =  ~ ~i(At) 5r ~ ~;(At) 5r (9) 
i = 1  i = 1  

where ~i(At)= ~(At, ~) and ~;(At) = ~(At, ~;). 

4. Redistr ibut ion of  the Weights  Associated w i t h  the  Post- 
collisional Velocit ies.  Consider a cell Ca(i). I t  carries now the weight 
~i(At) plus possible weights ~(At, ~k), k = 1,..., L, whose (postcollisional) 
velocities ~',.~ ..... ~ fell in C,(i). In this case, we set 

L 

g~(At) = g(At, ~i) = ~(At, ~i) + ~ ~(At, ~;k) (10) 
k = l  

and #7,, =ZT=~ g~(At) 5r 

5. I terat ion.  Return to step 2: Choose new random pairs, new 
random collision parameters, etc. 

As simple as this procedure is, we will prove below that it converges 
in a suitable limit to the Boltzmann equation. It is for this convergence 
proof that we had to choose the normalizing constants 2m and IS2[ = 4r~ 
in (6). 

2.2. The connect ion w i t h  Discrete Velocity Models  

The definition (5) arises, of course, from the roughest possible (Euler) 
discretization of the spatially homogeneous discrete velocity model 

d 
dt g(t, {i)= (2m) IS 2] q(r ~j, e)Eg( t, {;) g(t, { j ) -g( t ,  {i) g(t, {j)] 

d 
dt g(t, {j)= (2m)ISZf q({,, ~j, e)[g(t, {~) g(t, r  {i) g(t, r 

d g(t, ~ ) =  -(2m)IS21 q(~i, {j, e)[g(t, r g(t, ~j)--g(t, {i) g(t, {j)] 

(11) 

d 
g(t, ~j)= -(2rn) IS=I q({i, {j, e)[g(t, ~;) g(t, ~j)-g(t ,  ~,) g(t, {j)] 
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where we have modified the scheme such that the g are assured to be non- 
negative and chosen the initial values associated with secondary velocities 
[to be more precise, secondary configurations ({;{2k_l~,{;(2e/,ek)] as 
zero. This turns out not to be just a matter of convenience. Our convergence 
proof, as we will explain later, works only for this particular choice. 

It is of course well known that (11 ) with such data has a nonnegative 
global solution. We approximate this solution on (0, At) in the simplest 
possible way. Therefore, the scheme described in steps 1-5 is based on an 
Euler discretization of 4-velocity (Broadwell type) models, with a specific 
choice for the initial values. After each time step the collision rules are 
changed, and a new model emerges, for which the initial data must be 
adapted. 

3. A C O N V E R G E N C E  T H E O R E M  

3.1. Preparat ions 

Let t ~ {k. At; k = 0, 1, 2,... }. Consider the time-discretized spatially 
homogeneous Boltzmann equation 

f ( t  + At, ~) = f ({ ,  t) + a t f f  de d{.  q({, { . ,  e ){ f ' f  , - f f ,  } 

Let Cb(~ 3) be the space of all continuous bounded functions. After 
multiplication with a test function q~ e Cb0R3), integration, and the usual 
ai~plication of the collision transformation and symmetry properties we 
find 

(12t+zlt, q) ) = (~Lt, ~o ) + At f f f  q(~, r e) 

x �89 (12) 

where d/,,(r = f ( t ,  r d{. As for the collision kernel q, we assume that it is 
invariant under the collision transformation and otherwise a bounded and 
continuous function of its arguments. The second and third assumptions, of 
course, require a truncation in all cases of practical interest; for example, 
in the hard sphere case we have to replace I ( { - r  for large relative 
velocities by something bounded, and such that the result is continuous. 

Our assumptions on the collision kernel q imply that At can be chosen 
so small that /~,+a, is a probability measure if #, is one. Specifically, we 
have to choose At such that 

A t. f q de <~ l 
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to assure positivity of #,+a,. There is in fact no need here to confine the 
discussion to absolutely continuous measures, because (12) is well defined 
for general probability measures/a, and does in fact define #, for all t ~ N 
if/z0 is given. Equation (12) is our targeted limit equation. 

We abbreviate g(t, ~) and ~(t, ~)  by ge(t) and ~( t ) ,  respectively, and 
denote by #~', fi~' the random point measures generated iteratively by the 
procedure from Section 2. Specificaly, 

i = 1  

i = 1  i = i  

i = 1  

Our objective is a comparison of ]A~zjt  with #kz,, where P0(~) =f0(~)  de, 
and #(k+l)~t is given by (12). 

We will exploit the equivalence between weak-* convergence of 
bounded measures and convergence in the bounded Lipschitz distance. For 
simplicity, we only consider probability measures on 9~ 3. The bounded 
Lipschitz distance between two probability measures/~ and v is defined by 

p(v, p ) =  sup f q~dl~-fcpdv 
~pED 

where 

D =  {r ~R3-o [0, 1]; I~0(x)-r ~ IIx-yll } 

Lemma 3.1. (See ref. 14, Corollary 3.5.) Let {tz ~} be a sequence of 
random probability measures and let /~ be a probability measure on ~R 3. 
Then the following are equivalent: 

(a) Ve>O, Prob{p(#~,/~)>e} ~ 0  as n ~  oo. 

(b) Ve>0, Vtp~ Cb(9~3), Prob{[ </~ ~, ~o> - <#, cp>] >e} ~ 0  as n ~ ~ .  

(c) V~O~Cb(~R3), l i m ~ o ~ E ( # ' , ~ o ) =  (#,~o) and lim.~o~var(#~,~o) 
=0 .  

I . e m m a  3.2. Suppose that ~. is a sequence of random probability 
measures such that 
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in probability, and define 

i 

If (4) holds for each R > 0, then in probability 

V n  -..-~ V 

a s  TI ----~ 0 0 .  

ProoL For q~ e D, we have 

' (v . ,  q~)-  (vn, r = I~  Iv.(C.(i))qg('i)- ~c.u)q~(')d~.(4)] 

<~ ~ fc.u)~zR 1r162 q~(r d~.(r 2 Ik011L~ ~.(B~) 

and for all R > 0 

lim 
n - - * ~  

implies the assertion. 

Corollary 3.3. 

p(v., v) ~ p(v., ~.) + pff., v) 

lim ~ gi(O) 6~,(d~) = fo(~) d~ (14) 
n ~ o o  i = 1  

weak-, in the sense of bounded measures. 

I Ep(v., ~.) ~ 2 lira E~.(B~) = 2Ev(B~) 
n --* ~ 

As Ev defines a probability measure, limR_.~ Ev=O. It follows that 
limn ~ co Ep(~n, v,) = 0, and the triangle inequality 

IIIner and Wagner 

(13) 

Therefore, 

p(v., ~.) <<. ~ diam(C.(i) n BR) vn(Cn(i) N BR) + 2~.(B~) 
i 

~< sup diam(C.(i) n BR) + 2~.(B~) 
i 
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ProoL This follows from Lemma 3.2, the definition of the weights 
gg(0), and the property (4) of the cell partition. 

3.2. The Main Theorem 

The following theorem contains the main step toward convergence of 
our scheme. 

T h e o r e m  3.4. Suppose that we already know that in probability 

/~' --+ #t as n --+ oo 

assume that condition (4) is satisfied, and assume that the stochastic 
weights gi(t) obtained from the scheme in Section 2 satisfy the following 
conditions: 

A.1. ~ C >  0 such that Prob{n -sups gi(t) > C} ~ 0 as n ~ m. 

A.2. sup, E(n .supi gi(t)) z < oo. 

If then At<~ (8rtCqmax) -1, we have 

]27-4- ~ t  "~  ]2t 4- zJt 

in probability (in any of the three equivalent forms spelled out in 
Lemma 3.1 ). The constant C is the one from A.1, and qr, ax is short-hand for 
the lowest upper bound of q. 

Remarks. Conditions A.1 and A.2 mean that we assume that the 
normalization gi(t)<<, C/n, which is expected for t =  0, remains with large 
probability valid uniformly in n for all t = k A t ,  k =  1, 2 ..... This corre- 
sponds to L~ uniformly in n for the discrete velocity model. We 
strongly believe that this is a realistic assumption, at least if the initial 
value for the Boltzmann equation is in L ~, but have no proof for it. An 
investigation of the validity of A.1 and A.2 is planned for future work. 

Proof o f  Theorem 3.4. In view of Lemma 3.2, it is enough to show 
that ]-L t + A t  " ~  ]2t q_ Zt t in probability. 

Choose a rpECb(9t3). With this choice made, we introduce the 
following abbreviations: 

G(i, j, e) := [q~(~;) - (/0(~i)] F(i, j, e) + [q)(~j) - ~0(~j)] F(j, i, e) 

A( i , j )  : = l  [ s2G( i , j , e )de  

. l [  EG(i , j ,e )J2d e B(i, j)  . -  4~ s2 
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Then 

or briefly 

{cP(~2k-1)) g~(2k- 1)( t + ~It) + cp(r ) ~(2k)(t + At) 
k = l  

+ cP(~'~(2g- 1)1 g'~(2k- 1)(t + At) + r g;(2k)(t + At)} 

= ~ {~0(~.(2k--,)) g~(2k-- 1)(t) + CP(~=(2k)) g~(2k)(t)} 
k = l  

+ ~ { [q~(~'(2k-1)) -- r 1~)] F(rc(2k - 1), ~z(2k), ek) 
k = l  

+ [-(~( '~(2k))  - -  (~0(~n(2k))] F(rc(2k), rc(Zk - 1 ), ek) } 

</2t+,~,, r = (#7, q~) + ~, G(zc(2k- 1), rc(2k), ek) 
k = l  

(15) 

By assumption, the first term on the right converges in probability to 
(# / ,  q~). We calculate the limit of the sum by computing the first two 
moments  (i.e., expectation and variance) and by applying Lemma 3.1. To 
this end, let 

= ~ G(n(2k-1),n(2k),ek) 
k = l  

We denote by E(rllgi(t)) the conditional expectation of r/ given the 
random weights ge(t). By using the identity E(q)=E(E(qlgi(t)))  and 
because there are (2m)! permutations of { 1 ..... 2m}, we find 

1 
E ( t l l g i ( t ) ) = ~  f i  

1 !)m ~lf s E(r/) = E ~  (2m k~__1 2 G(n(2k-- 1), zc(2k), el de 

m 

= E ~ (2ml [) k~ = I A(zc(2k-1),~(2k)) 

We rewrite this in terms of possible pairs (i,j), i ~ j ,  i,j~{1,...,2m}. 
Clearly, for every such pair there are (2m - 2)! - m permutations ~z such that 
n ( 2 k - 1 )  = i, r c (2k)= j  [m possibilities to place the pair (i, j), times the 
( 2 m -  2)! possibilities to permute the remaining indices]. Therefore, 
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1 
E(r/)=E(-~m).  T y" A(i,j).(2m-2)! m 

i ~ j  

1 
- E 2(2m - 1 ) ~ A(i, j) (16) i,j 

In the last step we have used that for i= j, r = r and Cj = Cj, and thus 
A(i, i )=  0 by definition. 

Before we continue the evaluation of E(r/), we use similar arguments 
for a reduction of E(t/2): 

l m l f s I m  ]2 
E(r/2)=E~(-~--~m). T 1-I ~ de, ~= G(rc(Zk-1),~(Zk),ek) 

~z I, ) ' l = l  2 k 1 

l f i l f s  I ~  = E ~ ~ de, G(~(2k - 1), ~(2k), ek) 2 
l = 1  2 L k = t  

+ k#~ ~ G(rc(2k-  1), zr(2k), ek)- G(rc(2r-  1), rc(2r), e,) 1 

1 m 1 

= E~ (-~m)v.,~=, ~ fs 2de G(zc(2k-1 ), zr(2k), e) 2 

2 1 + E ~ . ~ ~  A(rc(2~: - 1), ~(2k)) A(~(2r - 1), ~(2r)) 

= E___2_ 1 
(2m)! (2m -- 2)1 m 2 B(i, j) 

i,j 
1 * 

+ E(2m)  [ ~ (2m--4)[m(m-1)A(i,j)A(c~,fl) 
i,j,o:,[~ 

The asterisk atop the last sum means that the sum is over all indices i, j, 
c~, fl for which no two of these are equal. Also, we have used that for fixed 
pairs i ~ j and a ~ r,  there are ( 2 m -  4)! m(m- 1 ) permutations 7r such that 
there are k and r, k S  r, with 7 r ( 2 k - 1 ) =  i, 7r(2k)=L r c ( 2 r - 1 ) = a ,  and 
rc(2r) = ft. The last expression can be rewritten as 

1 
~ B(i,j)+ E E(r/2) = E 2 ( 2 m -  1) i.j 4(2m-- 1)(2m-- 3) A(i,j) 

1 * *  

- E 4(2rn_l)(2m_3) ~ A(i,j)A(cqt3) (17) i,j, ot,~ 

822/70/3-4-18 
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where Y',** means that at least two of the indices i, j, ~,/~ are equal. Notice 
that the second term on the right of (17) is equal to 

E (  1 ) 2 2 m - 1  (18) 
2 (2m-1)  ~..A(i'j) . 2 m _ 3  

t ,J  

The next step is the ir/vestigation of the various terms, where we use, for 
the first time, the specific form of the functions F(i, j, e). Let 

rl(i,.L e) := 8re atmq({i ,  {j, e) gi(t) &(t)  
and 

1, Fl(i, j ,  e)>gi( t)  
I(i, j, e) = 0, otherwise 

Clearly, then 

F(i, j, e)= F1(i, j, e)[1 - I ( i ,  j, e)] + gi(t) I(i, j, e) 
and 

1 
y A(i , j )  

2(2m - 1) ;,j 

1)~4"~ de {[~o(~;)-q~(~.)] F(i,.~ e) 2(2m-  

+ [~o(~j)-- q~(~j)] F(~ i, e)} 

= 2m-l ~ l f  . . 

= 2ml ~ l f  1 . . 

1 i f  +'~--'1~-4-s de [~o(~;)-~o(~i) ] [ g i ( t ) -  f1(i, z e) ] I(i, Ze )  

_ 2m At ~ f de [~o(~;)- ~o(~)] q(~i, ~j, e) g~(t) &(t) 
2m - 1 . . z,J 

+RI 

From the definition o f / ~ ,  we find 

1 
A(i, J) 2(2m- 1) ~ 

2m 
=Rx+~--~-~At~f fde[q~(~ ' ) -~o(r162  (t9) 
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Since by definition 

we can estimate 

Now let 

gi(t) I(i, j, e) <<. F1(i, j, e) 1(i, j, e) 

1 1 f de F1(i, j, e) I(i, j, e) 
l ,J  

~< const.  Z g~(t) gj(t) I(i, j, e) 
i , j  

ia = {10 if otherwise 8~Atmqm~xmaxsgj(t)>l 

Then by definition I(i, j, e) <~ 11, and we obtain 

IR,I ~< const �9 1~ 

Also, as F(i, j, e) <~ Fl(i, j, e), we have the estimates 

]G(i,j, e)[ ~<4 fl~ollL= Fx(i,j, e)~< const .mgi(t) gq(t) 

[A(i, j)[ <~ const, mgi(t ) gj(t) 

JB(i, J)l ~< const, m2gi(t) 2 gi(t) z 

As a consequence, 

Y', M(i, j)[ <~ const -m 
i,j 

and 

~B(i,j)<-~const'{m~i gi(t)2)2 

~< const �9 {m sup gi(t)} 2 

Moreover, because A(i, i )=0 and A(i, j )=A( j ,  i), 

A(i, j) A(cq [3) <~ const - ~ A(i, j) A(~, [3) 
i , j ,~, ,8 i , j ,  fl 

~<const.m 2 ~, gi(t)2gj(t)ga(t) 
i,.h fl 

~< const,  mira sup gi(t)] 
i 

(20) 

(21) 

(22) 

(23) 

(24) 



788 I I Iner and Wagner 

Consider now the right-hand side of (19). Since P7 x #7 ~ ]~t x ~t weak-, in 
probability (or in probability in any of the equivalent ways spelled out in 
Lemma 3.1), and since the function 

s2 de [~o(~') - ~o(~)] q(~, ~, ,  e) 

is continuous and bounded, the second expression in (19) converges in 
probability to 

T : = f f f s d e  [q~(r q~(r q(~, ~ , ,  e) dgt(~) dl-tt(~.) 

The remaining term RI converges in probability to zero, because of (20) 
and by assumption A.1. 

Summarizing, we have proved that in probability 

1 
1 ) ~  A( i , j )  ~ T 2 ( 2 m -  i , j  

as m ~ oo. Furthermore, by (22) 

1 
2(2m - 1 ) ~' A(i, j)  

is bounded, and this implies that all moments also converge. In particular, 

1 
~" A(i, j)  ~ T as m ~ c~ (25) 

E 2(2m - 1 ) i,y 

and 

E 2 ( 2 m - 1  A ( i , j  ~ T  2 as m ~ o o  (26) 

By (16) and (25), E(r/) ~ T as m ~ 0% and by (17), (26), (23), (24), 
and assumption A.2, E(r/2) ~ T 2 as m ~ oo. From Chebyshev's inequality 
we obtain that r / ~  T in probability as m ~ ~ ,  and from this and (15) we 
finally have that 

(fiT+ ~,, q~ ) ~ (ILl, gO)+ T =  (#t+ at, r ) 

in probability as n (=2m) converges to infinity. 
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4. A R E M A R K  

Recall that we set g~(0) = 0, i = 1 ..... n, in Section 2. This definition has 
the simple physical interpretation that postcollisional velocities need not be 
occupied at time 0, because particles first have to experience collisions 
before they assume postcollisional velocities. 

From a mathematical point of view, this reasoning is not quite satis- 
factory, because the distinction between pre- and postcollisional velocities 
is only an artifact of our model. For the full Boltzmann equation, pre- and 
postcollisional velocities play fully symmetrical roles, due to the involutive 
property of the collision transformation. 

The postcollisional velocities ~ could also serve as auxiliary points to 
achieve a better point approximation of the initial measure #0. Specifically, 
instead of approximating #o by ~7= 1 g,(0) 6r we could choose g;(0), g;(0) 
such that 

i ~ l  i = i  

where at least some of the g;(0) would be positive. 
Suppose that we choose this option. The time-discretized discrete 

velocity model we then have to study is 

g~(At) = ge(O) + At(2m) Ise[ q(~i, ~j, e)[g;(0) gj(O)-g~(O) gj(0)] 

gj(At) = gj(O)+ At(2m) [Sel q(~i, ~s, e)[g;(0) gj(O)-g~(O) gj(0)] 
(27) 

g;(At) = g~(O)- At(2m) [$2[ q( ~, ~, e)[g;(0) gj(O)- g~(O) gs(0)] 

gj(At) = gj(O)-zlt(Zm) ISgl q(r es, e)[g~(0) gj(O)-g~(O) gj(0)] 

Here, (~, ej) is one of the chosen pairs and (r ~j) is the corresponding 
postcollisional pair. We set 

fi,~,= ~ gi(At)6r ~. g;(At)(~r 
i = 1  i = 1  

and ask whether 
- -  - ( 2 8 )  lim Efia , -,ua, 

will hold. By repeating the first few steps in the proof of Theorem 3.4, we 
get 

(fi~t, q~)= (#o, ~o) + ~ dt(2m) IS2f "q(r ~(2k), ek) 
k = l  

• [g'(2k- 1)(0) g'~2k)(0)- g~2k- 1~(0) g~(zk~(0)] (29) 
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Let now k = 1 ..... 2m, and set 

~(2k-- 1) :=  ~((2k-- 1)--2m) 

for m +  1 <<.k<~2m (i.e., we "add" the postcollisional velocities to our 
velocity set). Equivalently, 

~(2k) ~'-~" ~(2k+2m) 

r = ~.((2k--1)+2m) 

for k=l,...,m, and the collision term in (29) can be written in the 
symmetrized form 

2m 
~. At(2m) 1521 �9 q(r ~n(2k), ek) 

k=l  
' + • {~0(~(~_,)  ~0(~'~(2~))- ~0(r ~0(r 

x [g.(2k-1)(0) g.(2k)(O)] 

The problem which we face at this point is that even though (by construc- 
tion) #7) ~ #o in any of the meanings given by Lemma 3.1, we can no longer 
prove that the expectation of the above sum converges to 

�89 fffs z q(~, ~., e){q~' + ~ .  -- tp -- q~.} d#o(~ ) d, uo(~. ) de 

The difficulty is that while the collision pairs (~r~(2k--1), ~n(2k), k =  1 ..... m) 
were formed in a completely random and independent way, the collision 
pairs (r 1), ~'~(2k), k = 1,..., m) are fixed once the random choices for the 
original velocities are made. This introduces correlations into the scheme 
which may destroy the convergence to the product measure. To illustrate 
the problem, we use the following simple example, where we assume that 
#o= 2 (the Lebesgue measure) on the unit interval [0, 1 ]. 

Suppose that we have a sequence of point sets {xl ..... x,} c [0, 1], 
filling the interval such that ( 1 / n ) ~ 6 x i ~ 2  weak-*. Moreover, assume 
that an operation like the collision transformation, applied to randomly 
chosen pairs (xi, xfl from each set, yields "postcollisional" sets x'l ..... x ' ,  
which offer additional points to improve the approximation. 

To make our argument transparent, let us assume that these 
"postcollisional" points are distributed evenly enough such that we can 
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app rox ima te  2 on certain subintervals  of [0, 11 by using only postcolli-  
sional points. Specifically, suppose  that  we can approx imate  2 by precolli- 
sional points  on [0, 1/2) and by postcollisional points  on [1/2, l l .  Such a 
choice would  m a k e  the above convergence involving the p roduc t  measure  
). | ,~ impossible,  because collision pairs could only be of the type (xi, xj)  

or (x; ,  x j ) ,  but  never  (x;, xj). Because none of these pairs would lie in 
(0, 1/2) x (1/2, 1) or  (1/2, 1) x (0, 1/2), the limit measure  could not  be equal 
to 2x)~. 

The  dis t r ibut ion of the postcollisional velocities is clearly the big 
u n k n o w n  in this a rgument  (and, incidentally, also in any verification of our  
assumpt ions  A.1 and  A.2 in Theo rem 3.4). We plan to address this p rob lem 
in future work. 
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